Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Although Artificial Intelligence (AI) projects are common and desired by many institutions and research teams, there are still relatively few success stories of AI in practical use for the Earth science community. Many AI practitioners in Earth science are trapped in the prototyping stage and their results have not yet been adopted by users. Many scientists are still hesitating to use AI in their research routine. This paper aims to capture the landscape of AI-powered geospatial data sciences by discussing the current and upcoming needs of the Earth and environmental community, such as what practical AI should look like, how to realize practical AI based on the current technical and data restrictions, and the expected outcome of AI projects and their long-term benefits and problems. This paper also discusses unavoidable changes in the near future concerning AI, such as the fast evolution of AI foundation models and AI laws, and how the Earth and environmental community should adapt to these changes. This paper provides an important reference to the geospatial data science community to adjust their research road maps, find best practices, boost the FAIRness (Findable, Accessible, Interoperable, and Reusable) aspects of AI research, and reasonably allocate human and computational resources to increase the practicality and efficiency of Earth AI research.more » « less
- 
            Abstract Seismicity during explosive volcanic eruptions remains challenging to observe through the eruptive noise, leaving first‐order questions unanswered. How do earthquake rates change as eruptions progress, and what is their relationship to the opening and closing of the eruptive vent? To address these questions for the Okmok Volcano 2008 explosive eruption, Volcano Explosivity Index 4, we utilized modern detection methods to enhance the existing earthquake catalog. Our enhanced catalog detected significantly more earthquakes than traditional methods. We located, relocated, determined magnitudes and classified all events within this catalog. Our analysis reveals distinct behaviors for long‐period (LP) and volcano‐tectonic (VT) earthquakes, providing insights into the opening and closing cycle. LP earthquakes occur as bursts beneath the eruptive vent and do not coincide in time with the plumes, indicating their relationship to an eruptive process that occurs at a high pressurization state, that is, partially closed conduit. In contrast, VT earthquakes maintain a steadier rate over a broader region, do not track the caldera deflation and have a largerb‐value during the eruption than before or after. The closing sequence is marked by a burst of LPs followed by small VTs south of the volcano. The opening sequence differs as only VTs extend to depth and migrate within minutes of the eruption onset. Our high‐resolution catalog offers valuable insights, demonstrating that volcanic conduits can transition between partially closed (clogged) and open (cracked) states during an eruption. Utilizing modern earthquake processing techniques enables clearer understanding of eruptions and holds promise for studying other volcanic events.more » « less
- 
            Abstract By providing unrivaled resolution in both time and space, volcano seismicity helps to chronicle and interpret eruptions. Standard earthquake detection methods are often insufficient as the eruption itself produces continuous seismic waves that obscure earthquake signals. We address this problem by developing an earthquake processing workflow specific to a high‐noise volcanic environment and applying it to the explosive 2008 Okmok Volcano eruption. This process includes applying single‐channel template matching combined with machine‐learning and fingerprint‐based techniques to expand the existing earthquake catalog of the eruption. We detected an order of magnitude more earthquakes, then located, relocated, determined locally calibrated magnitudes, and classified the events in the enhanced catalog. This new high‐resolution earthquake catalog increases the number of observations by about a factor of 10 and enables the detailed spatiotemporal seismic analysis during a large eruption.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
